#H. [NOIP2015 普及组] 求和

    Type: RemoteJudge 1000ms 128MiB

[NOIP2015 普及组] 求和

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题目背景

NOIP2015 普及组 T3

题目描述

一条狭长的纸带被均匀划分出了 nn 个格子,格子编号从 11nn。每个格子上都染了一种颜色 coloricolor_i[1,m][1,m] 当中的一个整数表示),并且写了一个数字 numberinumber_i

编号 1 2 3 4 5 6
颜色和数字 5\color{blue}{5} 3\color{red}{3} 2\color{red}{2} 2\color{blue}{2} 2\color{red}{2}

定义一种特殊的三元组:(x,y,z)(x,y,z),其中 x,y,zx,y,z 都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:

  1. x,y,zx,y,z 都是整数,x<y<z,yx=zyx<y<z,y-x=z-y

  2. colorx=colorzcolor_x=color_z

满足上述条件的三元组的分数规定为 (x+z)×(numberx+numberz)(x+z) \times (number_x+number_z)。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以 1000710007 所得的余数即可。

输入格式

第一行是用一个空格隔开的两个正整数 nnm,nm,n 表纸带上格子的个数,mm 表纸带上颜色的种类数。

第二行有 nn 用空格隔开的正整数,第 ii 个数字表示纸带上编号为 ii 格子上面写的数字 numberinumber_i

第三行有 nn 用空格隔开的正整数,第 ii 数字表示纸带上编号为 ii 格子染的颜色 coloricolor_i

输出格式

一个整数,表示所求的纸带分数除以 1000710007 所得的余数。

6 2
5 5 3 2 2 2
2 2 1 1 2 1
82

15 4
5 10 8 2 2 2 9 9 7 7 5 6 4 2 4
2 2 3 3 4 3 3 2 4 4 4 4 1 1 1
1388

提示

样例 1 解释

纸带如题目描述中的图所示。

所有满足条件的三元组为:(1,3,5),(4,5,6)(1, 3, 5), (4, 5, 6)

所以纸带的分数为 $(1 + 5) \times (5 + 2) + (4 + 6) \times (2 + 2) = 42 + 40 = 82$。

对于第 11 组至第 22 组数据, 1n100,1m51 ≤ n ≤ 100, 1 ≤ m ≤ 5

对于第 33 组至第 44 组数据,1n3000,1m1001 ≤ n ≤ 3000, 1 ≤ m ≤ 100

对于第 55 组至第 6 6 组数据,1n100000,1m1000001 ≤ n ≤ 100000, 1 ≤ m ≤ 100000,且不存在出现次数超过 20 20 的颜色;

对于全部 1010 组数据,$1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, 1 ≤ color_i ≤ m,1≤number_i≤100000$。

C23越秀初二选拔赛

Not Attended
Status
Done
Rule
IOI
Problem
8
Start at
2024-11-9 14:00
End at
2024-11-9 17:00
Duration
3 hour(s)
Host
Partic.
22