Type: RemoteJudge 1000ms 128MiB

Calculating

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题目描述

xx 分解质因数结果为 x=p1k1p2k2pnknx=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k1+1)(k2+1)(kn+1)f(x)=(k_1+1)(k_2+1)\cdots (k_n+1),求 i=lrf(i)\sum_{i=l}^rf(i)998244353998\,244\,353 取模的结果。

输入格式

输入只有一行两个整数,分别表示 llrr

输出格式

输出一行一个整数表示答案。

2 4
7

提示

数据规模与约定

测试点编号 ll rr rlr-l
131\sim 3 1l101\le l\le 10 1r101\le r\le 10 rl=0r-l=0
474\sim 7 1l501\le l\le 50 1r501\le r\le 50
8108\sim 10 1l1001\le l\le 100 1r1001\le r\le 100 rl<50r-l<50
111611\sim 16 1l5001\le l\le 500 1r5001\le r\le 500 无特殊限制
172517\sim 25 1l1031\le l \le 10^3 1r1031\le r \le 10^3
263026\sim 30 1l5×1031\le l \le 5\times 10^3 1r5×1031\le r \le 5\times 10^3 rl<100r-l<100
314031\sim 40 1l1041\le l \le 10^4 1r1041\le r \le 10^4 无特殊限制
416041\sim 60 1l1071\le l \le 10^7 1r1071\le r \le 10^7
617061\sim 70 1l1091\le l \le 10^9 1r1091\le r \le 10^9
719071\sim 90 1l10121\le l \le 10^{12} 1r10121\le r \le 10^{12}
919591\sim 95 1l10131\le l \le 10^{13} 1r10131\le r \le 10^{13}
969796\sim 97 1l2×10131\le l \le 2\times 10^{13} 1r2×10131\le r \le 2\times 10^{13} rl<1013r-l<10^{13}
989998\sim 99 1l10131\le l \le 10^{13} 1r10141\le r \le 10^{14} rl>9×1013r-l>9\times 10^{13}
100100 1l10141\le l \le 10^{14} 1r1.6×10141\le r \le 1.6\times 10^{14} rl>1014r-l>10^{14}

ch17 - 数论

Not Claimed
Status
Done
Problem
8
Open Since
2024-1-28 0:00
Deadline
2024-3-3 23:59
Extension
2400 hour(s)